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Nuclear safety concerns can be thought of in terms of terrestrial, unmanned space

operations, manned space operations, and Moon and planetary bodies. These are

overlapping in many respects; however, there are unique aspects associated with each

area (Figure 1). For instance, for terrestrial operations, one must be concerned with the

anti-nuclear bias and the strict laws that must be adhered to in order to protect the

environment and people. For unmanned space operations, the main concerns are related

to low orbits and final disposal. Manned operations add a new class of problems

concerning the safety of the crew. For instance, if a nuclear propulsion unit fails on the

way to Mars and the crew keeps going with no way to get home, this is not acceptable.

Surface power supplies have their own unique features, but these are a subject for a

different meeting.

When one discusses safety of nuclear power and propulsion, one observes overlapping

and unique areas (Figure 2). Nuclear propulsion rockets have to deal with hydrogen

exhausting out of a nozzle that could contain fission products or radioactive materials.

Nuclear power systems need to be concerned with high burn up and fission products and

actinides formed over long operating times.

It is highly desirable to have a set of generic space safety guidelines. However, such

guidelines do not exist. One document on safety issued in the 1970's, OSNP-1, includes

an overall safety philosophy that pretty well summarizes the U.S. safety philosophy. It

states that the policy of the United States for all U.S. nuclear power sources in space is

to ensure that the probability of release of radioactive material and the amounts released

are such that an undue risk is not presented, considering the benefits of the mission

(Figure 3). Each program, such as SP-100, includes its own version of safety

requirements as part of the specifications.

General safety design requirements are given in Figure 4. In case of an accident, the
reactor must be maintained subcritical if it is immersed in water or other fluids.

Essentially, this relates to launch pad abort situations. Next, the reactor needs to have a

significant effective negative power coefficient--unfortunately, what is meant by

significant is not well defined. No credible launch accident may cause criticality relating

to fires and explosions that could result in a critical reactor generating significant

amounts of radiation. The reason for no reactor operation until a stable flight path is

achieved is for ground personnel safety and safety during launch aborts. The reactor

radiation levels are very low prior to normally planned operation in space. Flight

qualification will probably include a zero power test to check the nuclear physics of the

reactor, but the radiation levels will still be sufficiently low to avoid the need for special

procedures around the reactor on the launch pad. Two independent shutdown systems
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will ensure that the reactor will shutdownwhen commanded. Independent decay heat

removal paths are to avoid core meltdowns in case of a failure in the normal coolant

path.

One important factor in preparing safety requirements is that each requirement should

have an identifiable contribution to reducing safety related risk. The requirements

should be generic and not specify design solutions. In other words, safety requirements

should address safety issues and not particular design concepts.

Undue risk is another concern in arriving at safety requirements. There is no legal

definition for this term. For some, one in a million would be considered an acceptable

definition. Others would argue for some other number. Obviously, the consequences of

an event enter into what we accept as undue risk. The fact that we can not quantitize

the definition makes it difficult for many engineers in system design.

Terrestrial safety factors are given in Figure 5. Testing nuclear electric propulsion power

plants will require at least three independent barriers to radioactive materials being

released to the biosphere. Also, there will need to be an independent decay heat

removal system in case the primary coolant loop fails. Additional safety controls and

instrumentation will be needed to monitor ground test operations.

SP-100 flight system requirements are given in Figure 6. These are part of the SP-100

requirements document. However, the document tends to include design solutions as

part of the specifications. Generic safety specifications are preferable. SP-100 provides

a starting point for nuclear electric propulsion safety specifications preparation.

For manned systems (Figure 7), the safest response to an abnormal event may not be to

shutdown. If a habitat power system going to or on Mars is shutdown, the crew could

lose their life support equipment--not a very safe approach. We are going to have to

think about how to continue operations, even at a somewhat reduced level. Reactor

scram at times is an unacceptable safety action.

From past programs, we can look at lessons learned (Figure 8). Safety must start with

the initiation of the design process! A systematic determination of the effects of all

possible failures is needed right at the beginning of the design process. Countermeasures

must be developed for significant accident situations. The cost and benefits of mitigation

need to be assessed and appropriate remedies applied. Safety must be given more then

lip service and must truly be given primary priority.

SP-100 has recently performed detailed safety studies through all phases: ground

operations, launch, flight and disposal (Figures 9 and 10). The issues are similar to those

that will need to be addressed in nuclear electric propulsion power plants. This has led

to many design features (Figure 11 and 12), such as two independent shutdown systems,

control rods in the core, a special in-core method of cooling the system in case primary
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coolant is lost, and a reentry cone around the reactor.

During ground operations (Figure 13), the key concerns are to prevent accidental

criticality, avoid loss of special nuclear materials to terrorists, and ensure that radiation

levels around the launch pad are sufficiently low to ensure that special precautions are

not necessary for worker safety. The approaches for accomplishing safety, as given on

the figure, are well known.

For launch operations (Figure 14), the key concerns are to prevent accidental nuclear

criticality and to keep foreign countries from acquiring special nuclear material. For

instance, if an abort occurred during launch operations, we do not want special nuclear

material ending up in a foreign country and starting an international incident.

Approaches exist as to how to address these concerns. Redundant neutron poisons can

take care of preventing accidental criticality. In the NERVA program, we not only had
the control drums, but also had wires in the core that would be extracted when the

nuclear stage was separated. This provided independent redundant safety systems.

To ensure that an abort would lead to nuclear material being dispersed over water,

on-board destruct devices are used. Early launch aborts will end up in the Atlantic

Ocean. Later aborts have sufficient momentum to carry the satellite over an ocean

where the destruct device can destroy the satellite.

In flight operations (Figure 15), the key concerns have to do with unplanned reentry into

the biosphere and crew safety. Unplanned reentry can be reduced to very low

probability levels by selecting the flight trajectory to always move towards a safer orbit.
Interlocks can be used to shutdown the reactor if an unsafe condition is sensed. For

crew safety, either redundant systems need to be supplied or means to continue to

operate to bring the crew home. One must decide how much redundancy in engines and

power plants are going to be required to get home safely. One concept is to use seven

engines with a two engine out capability. This changes the thrust level and design

complexity of the engine and drives the whole development program. This issue is

important to resolve at the beginning of the systems engineering process.

o

Final disposal (Figure 16) must be considered to avoid reentry of the reactor into the

biosphere or contamination of low Earth orbit. The approach is to avoid bringing it
back to low Earth orbit when feasible and to select orbits to minimize risk. Returning

from Mars, a nuclear thermal rocket can be disposed of in deep space with final capture

of the crew capsule by aerocapture. This way, the nuclear thermal rocket can be

disposed of so that it never passes in the vicinity of the Earth.

Perceived safety (Figures 17 and 18) is an interesting subject because the public's

perception of safety is not the same as actual safety. Figure 17 shows the real safety of

SP-100. It is significantly safer then a transcontinental aircraft flight, diagnostic medical

services, radiation therapy or lifetime natural environments. As experienced in the
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nuclear industry, the real and perceived safety are often very different. The nuclear

industry probably has the safest record of any major industry in this country, but if you

ask the average person on the street, he probably thinks it is more dangerous than

driving a car. Perceived safety is an emotional issue and emotional issues are hard to

deal with. However, this is something that has to be addressed early in the program.

Reducing the real risk to a very low level helps in reducing perceived safety risk.

Turning to licensing, the users must know that launch approval will be granted in a

timely fashion (Figures 19 and 20). A procedure is in place to accomplish this. The

Interagency Nuclear Safety Review Panel performs independent safety/risk evaluations,

the agency flying a payload requests permission for flight, the Office of Science and

Technology Policy (OSTP) reviews the request and makes the launch decision, the
Executive Office of the President makes the final decision if OSTP feels that it is

appropriate.

The NERVA program design philosophy is given in Figure 21. Safety was a driving

force, in the flight engine design. The NERVA flight engine program and safety plan are

summarized in Figures 22 and 23. They included detailed safety analyses and

experiments and a requirement to be able to continuously provide 30,000 lb thrust in an

emergency mode.

In summary, potential solutions exist to reduce risk to acceptable levels. Unless safety is

considered from design selection and initiation, the cost of safety goes up dramatically.

Not only must the safety risk be reduced to acceptable levels, it must be done in a

manner that the perceived risk to the decision makers and public is acceptably low.

Licensing procedures are in place and the duration of the licensing process is

predictable. Users can count on approval for launch if procedures are followed and

operational constraints are similar to chemical systems.
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GENERAL SAFETY REQUIREMENTS

THE POLICY OF THE UNITED STATES FOR ALL U.S. NUCLEAR POWER
SOURCES IN SPACE IS TO ENSURE THAT THE PROBABILITY OF
RELEASE OF RADIOACTIVE MATERIAL AND THE AMOUNTS RELEASED
ARE SUCH THAT AN UNDUE RISK IS NOT PRESENTED, CONSIDERING
THE BENEFITS OF THE MISSION.

OSNP-1

Figure 3

SAFETY DESIGN REQUIREMENTS

• REACTOR DESIGNED TO REMAIN SUBCRITICAL IF IMMERSED IN WATER
OR OTHER FLUIDS

° SIGNIFICANT EFFECTIVE NEGATIVE POWER COEFFICIENT OF
REACTIVITY INCLUDED

• NO CREDIBLE LAUNCH ACCIDENT CAUSES CRTICALITY

• NO REACTOR OPERATION UNTIL STABLE FLIGHT PATH ACHIEVED

• TWO INDEPENDENT SHUTDOWN SYSTEMS

• INDEPENDENT DECAY HEAT REMOVAL PATH

• UNIRRADIATED FUEL POSE NO SIGNIFICANT ENVIRONMENTAL HAZARD
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TERRESTRIAL SAFETY

NUCLEAR ELECTRIC PROPULSION POWER PLANTS

- THREE INDEPENDENT BARRIERS TO RADIOACTIVE MATERIAL RELEASE

- INDEPENDENT DECAY HEAT REMOVAL SYSTEM

- ADDITIONAL SAFETY CONTROLS AND INSTRUMENTATION

NUCLEAR THERMAL ROCKETS

- LOSS-OF-COOLANT FLOW SYSTEM

- SCRUBBERS TO CLEAN EXHAUST OF RADIOACTIVE MATERIALS

- CONTAINMENT/CONFINEMENT UNCERTAIN

- ADDrrlONAL SAFETY CONTROLS AND INSTRUMENTATION

Figure 5

SP-100 FLIGHT SYSTEM
KEY SAFETY REQUIREMENTS

- MAINTAIN REACTOR SUBCRITICAL DURING ACCIDENTS AND DURING PERMANENT DISPOSAL

- FUEL/SAFETY ROD ALIGNMENT

- LAUNCH PAD FIRES

- EXPLOSWONS

- CORE IMPACTION

• INTACT REENTRY FOR SPECIFIED INADVERTENT EVENTS

• ESSENTIALLY INTACT BURIAL FOLLOWING INADVERTENT REENTRY

• HIGH RELIABILITY FOR REACTOR SHUTDOWN

• HIGH RELIABILITY FOR SHUTDOWN HEAT REMOVAL

• RETENTION OF REACTOR STRUCTURAL INTEGRITY FOR LOS_OF-COOLANT

• SECURE COMMUNICATIONS AND INHIBITS TO PREVENT REACTOR STARTUP PRIOR TO
OPERATIONAL ORBIT

• MINIMIUM USE OF HAZARDS, CHEMICALLY TOXIC MATERIALS

k
ARE THE REQUIREMENTS THE SAME II

FOR NEP POWER PLANTS? !
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SPACE--MANNED

• CONTINUING TO OPERATE MAY BE SAFER THAN SHUTTING DOWN

• MONITORING ASSESSMENT INSTRUMENTATION

SAFETY APPROACH

Figure 7

• SYSTEMATICALLY DETERMINE THE EFFECTS OF ALL POSSIBLE
FAILURES

• ADVISE COUNTERMEASURES TO PREVENT A NUCLEAR ACCIDENT

• ACCESS THE COST AND BENEFITS OF MITIGATION

• RECOMMEND APPROPRIATE REMEDIES

1

MUST START WITH INITIATION OF
THE DESIGN PROCESS! i
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POTENTIAL MISSION ACCIDENTS AND HAZARDS

NON-A, CTIVA TE D CORE

FISSION PRODUCTS IN
CORE FRO_I PC_IER OIDIERATION

5. TRANSFER TO

OPERATING
ORBIT

4, ASCENT TO

PARKING ORBIT

2. TRANSPORTATION

1.

ASSEMBLY

ASSEMBLY
ACCIDENTS

7. PERMANENT DISPOSAL
• BOOSTER FAILURE

• REENTRY AND IMPACT

6. IN-ORBIT

OPERATION

3. LAUNCH PAD

• SPACE DEBRIS IMPACTS

• BOOSTER FAILURES

• REENTRY AND IMPACT

• MISSION ABORTS

• REENTRY AND IMP/I_T_

e • LAUNCH VEHICLE EXPLOSIONS

• INTENSE FIRES

TRANSPORTATION
:IDENTS

Figure 9

SAFETY CONCERNS

• GROUND

• LAUNCH

• FLIGHT

• DISPOSAL

• PERCEIVED

• LICENSING
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KEY SAFETY FEATURES

REACTOR VESSEL

HINGED REFLECTOR
CONTROL SEGMENT

REENTRY
HEAT SHIELD

REACTOR SHIEL[

SUPPORT

STRUTS

REACTOR I&C
MULTIPLEXER

AUXILIARY
COOLING
RADIATOR

INCORE

SAFETY ROD
ACTUATOR

INTEGRATION _I

JOINTS

INCORE
SAFETY

RODS

FUEL BUNDLES
& HONEYCOMB
STRUCTURE

THAW ASSIST
HEAT PIPES

PRIMARY HEAT
TRANSPORT
PIPING AND
INSULATION

POWER

AUXILIARY
COOLING

GAS
SEPARATOR'

ACCUMULATOR

AUXILIARY

COOLING LOOP
- TEM PUMP

AND STARTER
RADIATOR

INTERFACE
) RING

e

o

Control elements

automatically shut reactor

down upon loss of power

Two Independent shutdown

Systems

Prompt negative reactivity

coefficient assures stable

reactor control

Only 4 out of 12 reflectors

required for shutdown

Fresh core at launch

Large negative void coefficient

enhances shutdown upon loss

of coolant

Control elemenls moved

Individually and In Icremental

amounts to prevent rapid

reactivity addition

Rhenium poison provides

the_rmai neutron absorption

for water flooding

KEY SAFETY FEATURES (CONT.) Figure ll

/
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GROUND OPERATIONS

KEY CONCERNS

- PREVENT ACCIDENTAL CRITICALITY

- AVOID LOSS OF SNM TO TERRORIST

- WORKER CONSTRAINTS AROUND LAUNCH PAD

APPROACHES

- ENGINE TRANSPORT

- CORE HEAVILY POISONED

- WATER-TIGI.n" STRUCTURE

- SI.IIPPING VESSEL FOR "WORS'I _" IMPACT ACCIDENT

- SHIPPED IN PREFERENTIAL MANNER

- LAUNCH PAD OPERATIONS

- KEEP RADIOACTIVE LEVELS BELOW SAFETY LIMITS

- REDUNDANT AND INDEPENDENT NEUTRON POISONS (E.G., POISON RODS IN COOLANT
CHANNELS, LOCKED DRUM SUBSYSTEM)

Figure 13

LAUNCH OPERATIONS

KEY CONCERNS

- PREVENT ACCIDENTAL CRITICALITY

- AVOID FOREIGN COUNTRY ACQUIRING SNM

APPROACHES

- REDUNDANT AND INDEPENDENT NEUTRON POISONS

- ON-BOARD DESTRUCT DEVICES

- FLIGHT PATH IN PREDETERMINED ZONES
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FLIGHT OPERATIONS

KEY CONCERNS

- UNPLANNED REENTRY INTO BIOSPHERE

- RADIOLOGiCAL EFFECTS ON CREW

- RS_ON PRODUCT RELEASE

- CONTINUING OPERATIONS TO GET HOME

APPROACHES

- SELECT ANGLES OF THRUST TO ALWAYS MOVE TO SAFER ORBITS

- SET ORBITS FOR SAFETY

- INTERLOCKS

- ENGINE DESTRUCT SYSTEM

REDUNDANT AND INDEPENDENT REACTOR CONTROL MODES (INCLUDING SET BACK
MODES)

- SHIELDING USING CONFIGURATION, LH2 IN TANK AND SPECIAL MATERIALS

- ENCAPSULATED FUELS

- REDUNDANT ENGINES/POWER PLANTS AND COMPONENTS Figure 15

DISPOSAL

• KEY CONCERNS

REENTRY INTO THE BIOSPHERE

- CONTAMINATION OF LOW EARTH ORBIT

• APPROACHES

- DON'T BRING IT BACK TO LOW EARTH ORBIT

SELECT ORBITS TO MINIMIZE RISK
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SP-1OO RADIATION EXPOSURE vs. PROBABILITY
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Figure 17

PERCEIVED SAFETY CONCERNS

KEY CONCERNS

REAL AND PERCEIVED RISK CAN BE VERY DIFFERENT

EMOTIONAL ISSUE

APPROACHES

REDUCE REAL RISK TO VERY LOW LEVEL

- OPERATIONAL SCENARIOS MUST BE PLAUSIBLE AND COMPLETE (EX. DISPOSAL)

- EDUCATION OF CONCERNED GROUPS

- AVOID DISCUSSIONS OF PROBABILITIES (USE ANALOGIES)
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LICENSING

KEY CONCERN

- TIMELY LAUNCH APPROVAL

APPROACHES

- CONSIDER SAFETY FROM THE START

- WORK CLOSELY WITH IN PLACE APPROVAL PROCESS

Figure 19

SAFETY APPROVAL PROCESS
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NERVA DESIGN PHILOSOPHY

"THE MAJOR DESIGN CRITERIA FOR THE NERVA ENGINE
DEVELOPMENT PROGRAM SHALL BE RELIABILITY AND THE

ACHIEVEMENT OF THE HIGHEST PROBABILITY OF MISSION SUCCESS.
NEXT IN THE ORDER OF IMPORTANCE MUST BE PERFORMANCE AS
MEASURED IN TERMS OF SPECIFIC IMPULSE. THEN THE ENGINE
DESIGN SHOULD ATTEMPT TO KEEP THE OVERALL WEIGHT AS LOW

AS POSSIBLE wri'HIN THE BOUNDS ALLOWED BY FUNDS AVAILABLE
FOR DEVELOPMENT. WHILE THERE ARE INTERRELATIONS BETWEEN

THESE CRITERIA IN DESIGN, I CAN SEE NO BASIS FOR ALTERING
THEIR ORDER OF IMPORTANCE."

MR. MILTON KLEIN (1967)

NERVA FLIGHT SAFETY PROGRAM

Figure 21

• SAFETY PLAN (S-019)

• FAULT TREE ANALYSIS

PROCEDURES (S-019-002)

• FLIGHT SAFETY CONTINGENCY

ANALYSIS REPORT (S-103)

RELIABILITY ALLOCATION,
ASSESSMENTS AND ANALYSIS

REPORT (R202)

• SINGLE-FAILURE-POINT

REPORTING, ANALYSIS,
CORRECTION AND CLOSEOUT

(R101 - NRP-306)
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NERVA SAFETY PLAN

THE MEANS FOR PREVE_ THE INADVERTENT AI"rAINMENT OF REACTOR CRITICALITY

THROUGH ANY CREDIBLE COMBINATION OF FAILAURES, MALFUNCTIONS, OR @PERATII=.S

DURING ALL GROUND, LAUNCH, FLIGHT, AND SPACE OPERATIONS.

A DESTRUCT SYSTEM DURING LAUNCH AND ASCENT TO ASSURE SUFFICIENT DISPERSION

OF THE REACTOR FULE UPON EARTH IMPACT TO PREVENT NUCLER CRITICALITY WITH THE

FUEL FULLY IMMERSED IN WATER.

THE MEANS FOR PREVENTING CREDIBLE CORE VAPORIZATION OR DISINTERGRATION OR

VIOLATION OF THE THRUST-LOAD PATH TO THE PAYLOAD.

DIAGNOSTIC INSTRUMENTATION ADEQUATE TO DETECT THE APPROACH OF A FAILURE OR

AN EVENT THAT COULD INJURE THE CREW OR DAMAGE THE SPACECRAFT AND THE

PROVISIONS TO PRECLUDE SUCH AN EVENT.

THE CAPABIUTY FOR REMOTE OVERRIDE OF THE _ PROGRAMMER BY ":3,,'IECREW

AND GRUND CONTROL AS WELL AS FOR REMOTE SHUTDOWN INDEPENDENT OF THE

ENGINE PROGRAM.

AN ENGINE CONTROL SYSTEM CAPABILITY TO PRECLUDE EXCESSIVE OR DAMAGING

DEVIATIONS FROM PROGRAMMED POWER AND RAMP RATES.

PROVIDE AN EMERGENCY MODE ON THE ORDER OF 30,000 Ib-thrust, 500s SPECIFIC

IMPULSE AND 108 Ib-sec TOTAL IMPULSE.

Figure 23

SUMMARY

• POTENTIAL SOLUTIONS EXIST TO REDUCE RISK TO ACCEPTABLE
LEVELS

• THE COST OF SAFETY GOES UP DRAMATICALLY IF NOT CONSIDERED
FROM DESIGN SELECTION AND INITIATION

• PERCEIVE SAFETY CONCERNS MUST BE ADDRESSED

• LICENSING PROCEDURES IN PLACE AND PREDICTABLE

• OPERATIONAL CONSTRAINTS ARE SIMILAR TO CHEMICAL SYSTEMS
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